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Power Electronic Systems

What is Power Electronics ?

A field of Electrical Engineering that deals with the application of 
power semiconductor devices for the control and conversion of 
electric power

Power Electronics
Converters

Load

Controller

Output
- AC
- DC

Input
Source
- AC
- DC
- unregulated

Reference

POWER ELECTRONIC 
CONVERTERS – the 
heart of power a power 
electronics system

sensors



Power Electronic Systems

Why Power Electronics ?

Power semiconductor devices Power switches

ON   or   OFF
+    vsw   −

= 0

isw

+    vsw   −

isw = 0

Ploss = vsw× isw = 0

Losses ideally ZERO !
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Power Electronic Systems

Why Power Electronics ?

Power semiconductor devices Power switches
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Power Electronic Systems

Why Power Electronics ?

Passive elements High frequency
transformer
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Power Electronic Systems

Why Power Electronics ?

Power Electronics
Converters

sensors

Load

Controller

Output
- AC
- DC

Input
Source
- AC
- DC
- unregulated

Reference

IDEALLY LOSSLESS !



Power Electronic Systems

Why Power Electronics ?

Other factors:

• Improvements in power semiconductors fabrication

• Decline cost in power semiconductor

• Advancement in semiconductor fabrication

• ASICs • FPGA • DSPs

• Faster and cheaper to implement complex 
algorithm

• Power Integrated Module (PIM),  Intelligent Power 
Modules (IPM)



Power Electronic Systems

Some Applications of Power Electronics :

Power rating of < 1 W  (portable equipment)

Tens or hundreds Watts (Power supplies for computers /office equipment)

Typically used in systems requiring efficient control and conversion of 
electric energy:

Domestic and Commercial Applications
Industrial Applications
Telecommunications
Transportation
Generation, Transmission and Distribution of electrical energy 

kW to MW : drives

Hundreds of MW in DC transmission system (HVDC)



Modern Electrical Drive Systems

• About 50% of electrical energy used for drives

• Can be either used for fixed speed or variable speed

• 75% - constant speed, 25% variable speed (expanding)

• Variable speed drives typically used PEC to supply the motors

AC motors
- IM
- PMSM

DC motors (brushed)

SRM
BLDC



Modern Electrical Drive Systems

Classic Electrical Drive for Variable Speed Application :

• Bulky

• Inefficient

• inflexible



Modern Electrical Drive Systems

Power
Electronic
Converters

LoadMoto
r

Controller
Reference

POWER IN

feedback

Typical Modern Electric Drive Systems

Power Electronic Converters
Electric Energy
- Unregulated -

Electric Energy
- Regulated -

Electric Motor
Electric 
Energy

Mechanical 
Energy



Modern Electrical Drive Systems
Example on VSD application

motor pump

valve

Supply

Constant speed Variable Speed Drives

Power
In

Power loss
Mainly in valve

Power out



Modern Electrical Drive Systems
Example on VSD application

Power
In

Power loss
Mainly in valve

Power out

motor pump

valve

Supply
motorPEC pump

Supply

Constant speed Variable Speed Drives

Power
In

Power loss

Power out



Modern Electrical Drive Systems

Power
In

Power loss
Mainly in valve

Power out

Power
In

Power loss

Power out

motor pump

valve

Supply
motorPEC pump

Supply

Constant speed Variable Speed Drives

Example on VSD application



Modern Electrical Drive Systems

Electric motor consumes more than half of electrical energy in the US

Fixed speed Variable speed

HOW ? 

Improvements in energy utilization in electric motors give large 
impact to the overall energy consumption

Replacing fixed speed drives with variable speed drives

Using the high efficiency motors

Improves the existing power converter–based drive systems

Example on VSD application



DC drives: Electrical drives that use DC motors as the prime mover

Regular maintenance, heavy, expensive, speed limit

AC drives:   Electrical drives that use AC motors as the prime mover

Less maintenance, light, less expensive, high speed

Modern Electrical Drive Systems

Overview of AC and DC drives

Easy control, decouple control of torque and flux

Coupling between torque and flux – variable spatial angle 
between rotor and stator flux



Before semiconductor devices were introduced (<1950)
• AC motors for fixed speed applications
• DC motors for variable speed applications

After semiconductor devices were introduced (1960s)

• Variable frequency sources available – AC motors in variable 
speed applications 

• Coupling between flux and torque control
• Application limited to medium performance applications –

fans, blowers, compressors – scalar control 

• High performance applications dominated by DC motors –
tractions, elevators, servos, etc 

Modern Electrical Drive Systems

Overview of AC and DC drives



After vector control drives were introduced (1980s)

• AC motors used in high performance applications – elevators, 
tractions, servos

• AC motors favorable than DC motors – however control is 
complex hence expensive

• Cost of microprocessor/semiconductors decreasing –predicted 
30 years ago AC motors would take over DC motors 

Modern Electrical Drive Systems

Overview of AC and DC drives



Overview of AC and DC drives

Extracted from Boldea & Nasar

Modern Electrical Drive Systems



Power Electronic Converters in ED Systems
Converters for Motor Drives
(some possible configurations)

DC Drives AC Drives

DC SourceAC Source

AC-DC-DCAC-DC

AC Source

Const. 
DC

Variable 
DC

AC-DC-AC AC-AC

NCC FCC

DC Source

DC-AC DC-DC-AC

DC-DCDC-AC-DC



Power Electronic Converters in ED Systems

Converters for Motor Drives

Configurations of Power Electronic Converters depend on:

Sources available

Type of Motors 

Drive Performance - applications

- Braking

- Response

- Ratings



Power Electronic Converters in ED Systems
DC DRIVES

Available AC source to control DC motor (brushed)

AC-DC-DCAC-DC

Controlled Rectifier
Single-phase
Three-phase

Uncontrolled Rectifier
Single-phase
Three-phase

DC-DC Switched mode
1-quadrant, 2-quadrant

4-quadrant

Control Control



Power Electronic Converters in ED Systems
DC DRIVES
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Power Electronic Converters in ED Systems
DC DRIVES
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Power Electronic Converters in ED Systems
DC DRIVES

AC-DC

Ia

Q1Q2

Q3 Q4

Vt

3-phase
supply

+

Vt

-

ia

- Operation in quadrant 1 and 4 only



Power Electronic Converters in ED Systems
DC DRIVES

AC-DC

Q1Q2

Q3 Q4



T

3-phase
supply

3-
phase
supply

+

Vt





Power Electronic Converters in ED Systems
DC DRIVES

AC-DC

Q1Q2

Q3 Q4



T

F1

F2

R1

R2
+    Va -

3-phase
supply 



Power Electronic Converters in ED Systems
DC DRIVES

AC-DC

Cascade control structure with armature reversal (4-quadrant):

Speed
controller

Current
Controller

Firing
Circuit

Armature 
reversal

iD

iD,ref

iD,ref

iD,



ref + +

_
_



Power Electronic Converters in ED Systems
DC DRIVES

AC-DC-DC

controlUncontrolled 
rectifier

Switch Mode DC-DC
1-Quadrant
2-Quadrant
4-Quadrant



Power Electronic Converters in ED Systems
DC DRIVES

AC-DC-DC

control



T1 conducts  va = Vdc

Q1Q2

Va

Ia

T1

T2

D1

+

Va

-

D2

ia

+

Vdc

-

DC DRIVES
AC-DC-DC DC-DC: Two-quadrant Converter

Power Electronic Converters in ED Systems



Q1Q2

Va

Ia

T1

T2

D1

+

Va

-

D2

ia

+

Vdc

-

D2 conducts  va = 0

Va Eb

T1 conducts  va = Vdc

Quadrant 1 The average voltage is made larger than the back emf

DC DRIVES
AC-DC-DC DC-DC: Two-quadrant Converter

Power Electronic Converters in ED Systems



Q1Q2

Va

Ia

T1

T2

D1

+

Va

-

D2

ia

+

Vdc

-

D1 conducts  va = Vdc

DC DRIVES
AC-DC-DC DC-DC: Two-quadrant Converter

Power Electronic Converters in ED Systems



Q1Q2

Va

Ia

T1

T2

D1

+

Va

-

D2

ia

+

Vdc

-

T2 conducts  va = 0

Va
Eb

D1 conducts  va = Vdc

Quadrant 2 The average voltage is made smallerr than the back emf, thus 
forcing the current to flow in the reverse direction

DC DRIVES
AC-DC-DC DC-DC: Two-quadrant Converter

Power Electronic Converters in ED Systems



DC DRIVES
AC-DC-DC DC-DC: Two-quadrant Converter

+
vc

2vtri
vc

+
vA

-

Vdc

0

Power Electronic Converters in ED Systems



leg A leg B

+  Va -
Q1

Q4

Q3

Q2

D1 D3

D2D4

+

Vdc

-

va = Vdc when Q1 and Q2 are ON

Positive current

Power Electronic Converters in ED Systems
DC DRIVES

AC-DC-DC DC-DC: Four-quadrant Converter



leg A leg B

+  Va -
Q1

Q4

Q3

Q2

D1 D3

D2D4

+

Vdc

-

va = -Vdc when D3 and D4 are ON
va = Vdc when Q1 and Q2 are ON

va = 0             when current freewheels through Q and D

Positive current

Power Electronic Converters in ED Systems
DC DRIVES

AC-DC-DC DC-DC: Four-quadrant Converter



va = -Vdc when D3 and D4 are ON
va = Vdc when Q1 and Q2 are ON

va = 0             when current freewheels through Q and D

Positive current

va = Vdc when D1 and D2 are ON

Negative current

leg A leg B

+  Va -
Q1

Q4

Q3

Q2

D1 D3

D2D4

+

Vdc

-

Power Electronic Converters in ED Systems
DC DRIVES

AC-DC-DC DC-DC: Four-quadrant Converter



va = -Vdc when D3 and D4 are ON
va = Vdc when Q1 and Q2 are ON

va = 0             when current freewheels through Q and D

Positive current

va = -Vdc when Q3 and Q4 are ON
va = Vdc when D1 and D2 are ON

va = 0             when current freewheels through Q and D

Negative current

leg A leg B

+  Va -
Q1

Q4

Q3

Q2

D1 D3

D2D4

+

Vdc

-

Power Electronic Converters in ED Systems
DC DRIVES

AC-DC-DC DC-DC: Four-quadrant Converter



Power Electronic Converters in ED Systems
DC DRIVES

AC-DC-DC

vAB

Vdc

-Vdc

Vdc

0
vB

vA
Vdc

0

2vtri
vc

vc

+

_

Vdc
+
vA

-

+
vB

-

Bipolar switching scheme – output 
swings between VDC and -VDC



Power Electronic Converters in ED Systems
DC DRIVES

AC-DC-DC
Unipolar switching scheme – output 
swings between Vdc and -Vdc
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Power Electronic Converters in ED Systems
DC DRIVES

AC-DC-DC

Bipolar switching scheme
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• Current ripple in unipolar is smaller
• Output frequency in unipolar is effectively doubled

Vdc

Vdc

Vdc

DC-DC: Four-quadrant Converter

Armature 
current

Armature 
current



Power Electronic Converters in ED Systems
AC DRIVES

AC-DC-AC

control

The common PWM technique: CB-SPWM with ZSS  

SVPWM



Modeling and Control of Electrical Drives

• Control the torque, speed or position

• Cascade control structure

Motor

Example of current control in cascade control structure

converter
speed

controller
position

controller

-

+
*

1/s

+ +

- -
current

controller

T**





kT



Modeling and Control of Electrical Drives

Current controlled converters in DC Drives  - Hysteresis-based

iref

+

Vdc

−

ia

iref

va

+

Va

-

ierr

ierr

q

q

• High bandwidth, simple implementation, 
insensitive to parameter variations

• Variable switching frequency – depending on 
operating conditions

+
_



Modeling and Control of Electrical Drives

Current controlled converters in AC Drives  - Hysteresis-based

3- �phase
AC Motor

+

+

+

i*a

i*b

i*c

Converter

• For isolated neutral load,  ia + ib + ic = 0 
control is not totally independent

• Instantaneous error for isolated neutral load can 
reach double the band



Modeling and Control of Electrical Drives

Current controlled converters in AC Drives  - Hysteresis-based

id

iq

is

DhDh DhDh

• For isolated neutral load,  ia + ib + ic = 0 
control is not totally independent

• Instantaneous error for isolated neutral load can 
reach double the band



Modeling and Control of Electrical Drives

Current controlled converters in AC Drives  - Hysteresis-based

powergui

Continuous

Universal Bridge 1

g

A

B

C

+

-

To Workspace1

iaref

Subsystem

c1

c2

c3

ina

inb

inc

p1

p2

p3

p4

p5

p6

Sine Wave 2

Sine Wave 1

Sine Wave

Series RLC Branch 3

Series RLC Branch 2

Series RLC Branch 1

Scope

DC Voltage Source Current Measurement 3

i+ -

Current Measurement 2

i
+ -

Current Measurement 1

i
+ -

• Dh = 0.3 A
• Sinusoidal reference current, 30Hz

• Vdc = 600V
• 10W,50mH load



Modeling and Control of Electrical Drives

Current controlled converters in AC Drives  - Hysteresis-based
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Modeling and Control of Electrical Drives

Current controlled converters in AC Drives  - Hysteresis-based

-10 -5 0 5 10

-10

-5

0

5

10

Actual current locus

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06

-0.5

0

0.5

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06

-0.5

0

0.5

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06

-0.5

0

0.5

0.6A

0.6A

0.6A

Current error



vtri

Vdc

q
vc

q

Vdc

Pulse width
modulator

vc

Vdc

Pulse width
modulator

vc
iref

PI
+

- q

Modeling and Control of Electrical Drives

Current controlled converters in DC Drives  - PI-based



Motor

+

+

+

i*a

i*b

i*c

Converter

PWM

PWM

PWM

PWM

PWM

PWM

• Sinusoidal PWM

PI

PI

PI

• Interactions between phases  only require 2 controllers
• Tracking error

Modeling and Control of Electrical Drives

Current controlled converters in DC Drives  - PI-based



• Interactions between phases  only require 2 controllers
• Tracking error

• Perform the control in synchronous frame
- the current will appear as DC

• Perform the 3-phase to 2-phase transformation
- only two controllers (instead of 3) are used

Modeling and Control of Electrical Drives

Current controlled converters in DC Drives  - PI-based



Motor

i*a

i*b

i*c

Converter

PWM

+

+

+

PWM

PWM

PI

PI

PI

Modeling and Control of Electrical Drives

Current controlled converters in AC Drives  - PI-based



Motor

i*a

i*b

i*c

Converter

3-2

3-2
SVM
2-3

PI

PI

Modeling and Control of Electrical Drives

Current controlled converters in AC Drives  - PI-based



id*

iq*
PI

controller
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SVM 
or SPWM

VSI
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PI
controller

Synch speed 
estimator
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Modeling and Control of Electrical Drives

Current controlled converters in AC Drives  - PI-based



Modeling and Control of Electrical Drives
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Current controlled converters in AC Drives  - PI-based



Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with Controlled rectifier

firing
circuit

controlled 
rectifier



+

Va

–

vc

va(s)vc(s)
DC motor

The relation between vc and va is determined by the firing circuit

?

It is desirable to have a linear relation between vc and va



Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with Controlled rectifier
Cosine-wave crossing control

Vm

vsvc

0  2 3 4

Input voltage

Cosine wave compared with vc

Results of comparison trigger SCRs

Output voltage



Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with Controlled rectifier
Cosine-wave crossing control

Vm

vsvc

0  2 3 4
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A linear relation between vc and Va



Va is the average voltage over one period of the waveform
- sampled data system

Delays depending on when the control signal changes – normally taken 
as half of sampling period

Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with Controlled rectifier



Va is the average voltage over one period of the waveform
- sampled data system

Delays depending on when the control signal changes – normally taken 
as half of sampling period

Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with Controlled rectifier
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H Ke)s(G
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vc(s) Va(s)
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V
V2K




Single phase, 50Hz

T=10ms

s

m,LL

V
V3

K


 -

Three phase, 50Hz

T=3.33ms

Simplified if control bandwidth is reduced to much lower than the 
sampling frequency

Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with Controlled rectifier



firing
circuit

current
controller

controlled 
rectifier


+

Va

–

vciref

• To control the current – current-controlled converter
• Torque can be controlled
• Only operates in Q1 and Q4 (single converter topology)

Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with Controlled rectifier



Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with Controlled rectifier
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• Input 3-phase, 240V, 50Hz • Closed loop current control 
with PI controller



Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with Controlled rectifier

• Input 3-phase, 240V, 50Hz • Closed loop current control 
with PI controller
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Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with SM Converters



vc

+

Va

−

vtri

Vdc

q

Switching signals obtained by comparing 
control signal with triangular wave

Va(s)vc(s)
DC motor

We want to establish a relation between vc and Va

?

AVERAGE voltage

Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with SM Converters
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Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with SM Converters



-Vtri

Vtri

-Vtri

vc

d

vc

0.5

For vc = -Vtri  d = 0

Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with SM Converters



Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with SM Converters
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For vc = -Vtri  d = 0
For vc = 0   d = 0.5

For vc = Vtri  d = 1



Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with SM Converters
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Thus relation between vc and Va is obtained as:

c
tri

dc
dca v

V2
VV5.0V 

Introducing perturbation in vc and Va and separating DC and AC components:

c
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dca v

V2
VV5.0V 

c
tri

dc
a v~

V2
Vv~ 

DC:

AC:
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Taking Laplace Transform on the AC, the transfer function is obtained as:
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DC motor
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Bipolar switching scheme
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Bipolar switching scheme
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Leg a

Leg b

The same average value we’ve seen for bipolar !
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Modeling and Control of Electrical Drives
Modeling of the Power Converters: DC drives with SM Converters



DC motor – separately excited or permanent magnet

Extract the dc and ac components by introducing small 
perturbations in Vt, ia, ea, Te, TL and m

a
a

aaat e
dt
di

LRiv 

Te = kt ia ee = kt 

dt
dJTT m

le




a
a

aaat e~
dt
i~d

LRi~v~ 

)i~(kT~ aEe 

)~(ke~ Ee 

dt
)~(dJ~BT~T~ Le




ac components

aaat ERIV 

aEe IkT 

 Ee kE

)(BTT Le 

dc components 
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Perform Laplace Transformation on ac components

a
a

aaat e~
dt
i~d

LRi~v~ 

)i~(kT~ aEe 

)~(ke~ Ee 

dt
)~(dJ~BT~T~ Le




Vt(s) = Ia(s)Ra + LasIa + Ea(s)

Te(s) = kEIa(s)

Ea(s) = kE(s)

Te(s) = TL(s) + B(s) + sJ(s)

DC motor – separately excited or permanent magnet
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DC motor – separately excited or permanent magnet
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Design procedure  in cascade control structure 

• Inner loop (current or torque loop) the fastest –
largest bandwidth 

• The outer most loop (position loop) the slowest –
smallest bandwidth

• Design starts from torque loop proceed towards 
outer loops

Closed-loop speed control – an example 
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OBJECTIVES:

• Fast response – large bandwidth
• Minimum overshoot 

good phase margin (>65o)
• Zero steady state error – very large DC gain

BODE PLOTS

• Obtain linear small signal model
METHOD

• Design controllers based on linear small signal model

• Perform large signal simulation for controllers verification 

Closed-loop speed control – an example 
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Ra  = 2 W La  = 5.2 mH

J  = 152 x 10–6 kg.m2B  = 1 x10–4 kg.m2/sec

kt = 0.1 
Nm/A

ke = 0.1 V/(rad/s)

Vd = 60 V Vtri = 5 V

fs = 33 
kHz

Closed-loop speed control – an example 

• PI controllers • Switching signals from comparison 
of vc and triangular waveform
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Bode Diagram
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Torque controller design 
Open-loop gain



Speed controller design 

1Speed
controller sJB

1


* T* T 

–

+

Torque loop
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Bode Diagram
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Large Signal Simulation results
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INDUCTION MOTOR DRIVES

Scalar Control Vector Control

Const. V/Hz is=f(r) FOC DTC

Rotor Flux Stator Flux Circular
Flux

Hexagon
Flux

DTC
SVM



Control of induction machine based on steady-state model (per phase SS 
equivalent circuit):

Rr’/s

+

Vs

–

Rs
Lls Llr’

+

Eag

–

Is Ir’

Im

Lm
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rs

Trated

Pull out 
Torque
(Tmax)

Te

ssm ratedrotor

TL

Te

Intersection point 
(Te=TL) determines the 
steady –state speed
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Given a load T– characteristic, the steady-state speed can be 
changed by altering the T– of the motor:

Pole changing 
Synchronous speed change with no. 
of poles
Discrete step change in speed

Variable voltage (amplitude), frequency 
fixed
E.g. using transformer or triac
Slip becomes high as voltage reduced –
low efficiency

Variable voltage (amplitude), variable 
frequency (Constant V/Hz)
Using power electronics converter 
Operated at low slip frequency 

Modeling and Control of Electrical Drives
Modeling of the Power Converters: IM drives



Variable voltage, fixed frequency 
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Lower speed  slip 
higher
Low efficiency at low 
speed

e.g. 3–phase squirrel cage IM

V = 460 V      Rs= 0.25 W

Rr=0.2 W Lr = Ls = 
0.5/(2*pi*50) 

Lm=30/(2*pi*50)

f = 50Hz      p = 4
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Constant V/Hz 

Approximates constant air-gap flux when Eag is large 

Eag = k f ag

f
V

f
Eag ag = constant 

Speed is adjusted by varying f  - maintaining V/f constant to avoid 
flux saturation 

To maintain V/Hz   constant

+
V
_

+
Eag

_
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Constant V/Hz 
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Constant V/Hz 
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Constant V/Hz 
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To Workspace1
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Constant V/Hz 

Simulink blocks for Constant V/Hz Control
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Problems with open-loop constant V/f

At low speed, voltage drop across stator impedance is significant 
compared to airgap voltage - poor torque capability at low speed

Solution:
1.  Boost voltage at low speed
2.  Maintain Im constant – constant ag

Modeling and Control of Electrical Drives
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With compensation (Is,ratedRs)  
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• Torque deteriorate at low 
frequency – hence 
compensation commonly 
performed at low 
frequency

• In order to truly 
compensate need to 
measure stator current –
seldom performed

Modeling and Control of Electrical Drives
Modeling of the Power Converters: IM drives



With voltage boost at low frequency  

Vrated

frated

Linear offset

Non-linear offset – varies with IsBoost
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Poor speed regulation

Solution:
1.  Compesate slip
2.  Closed-loop control

Problems with open-loop constant V/f
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Vdc Idc

Ramp
f

C

Modeling and Control of Electrical Drives
Modeling of the Power Converters: IM drives



A better solution : maintain ag constant. How?

ag, constant →  Eag/f , constant  →  Im, constant (rated)

maintain at rated

Controlled to maintain Im at rated
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Constant air-gap flux
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• Current is controlled using current-
controlled VSI

• Dependent on rotor parameters –
sensitive to parameter variation
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Constant air-gap flux
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Constant air-gap flux


